Which validation is more valid?

Jiří Ambros
CDV – Transport Research Centre
Czech Republic
Introduction

- How to collect data for validation?
- A potential surrogate X in road network...
 - Overall validation (correlate X and accident frequency)
 - Define safe/unsafe roads, collect X, estimate cut-off value
 - Define a cut-off value and check the relationship to safety
 - Naturalistic driving study (safe behaviour \rightarrow safe X values)
Desired validation results...
Examples

- Floating car data
 - Company vehicle fleets, GPS + IMU

- Example analyses
 - Speeds
 - Accelerations
 - Jerks
Example 1: Speed consistency

- Theory: unsafe (unexpected) curves \rightarrow hard braking
 - Speed consistency $dV = V_{\text{curve}} - V_{\text{tangent}}$
 - Negative $dV =$ braking (the less dV, the more risk)
- GPS data in 509 tangent-curve pairs (with 100+ drives)
- Safety level (6 yrs acc.) estimate adjusted by accident prediction model \rightarrow empirical Bayes estimate (EB)
Approach 1: Overall validation

- Relationship between \(dV \) and \(EB \) ?
- No correlation
Approach 2: Safe roads → safe consistency?

- Using pivot tables
- The higher risk, the smaller sample
- Sign of trend, but no clear dV threshold

<table>
<thead>
<tr>
<th>EB</th>
<th>avg dV</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>-1.27</td>
<td>252</td>
</tr>
<tr>
<td>1-2</td>
<td>-1.74</td>
<td>190</td>
</tr>
<tr>
<td>2-3</td>
<td>-3.60</td>
<td>42</td>
</tr>
<tr>
<td>3-4</td>
<td>-2.50</td>
<td>12</td>
</tr>
</tbody>
</table>

![Graph showing average dV across different EB categories]
Approach 3: Is there a cut-off value of dV?

- Sample again limited on borders
- Cut-off at –20 km/h, consistent with past research

<table>
<thead>
<tr>
<th>dV</th>
<th>avg EB</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>< -20</td>
<td>2.84</td>
<td>6</td>
</tr>
<tr>
<td>-20 ... -11</td>
<td>1.35</td>
<td>25</td>
</tr>
<tr>
<td>-10 ... -1</td>
<td>1.27</td>
<td>272</td>
</tr>
<tr>
<td>0-9</td>
<td>1.22</td>
<td>190</td>
</tr>
<tr>
<td>10-19</td>
<td>1.04</td>
<td>12</td>
</tr>
<tr>
<td>> 20</td>
<td>0.80</td>
<td>4</td>
</tr>
</tbody>
</table>

![Bar chart showing average EB values for different dV intervals.](chart.png)
Example 2: Accelerations

\(a_x \) … braking/accelerating
\(a_y \) … left/right turns

- Various risk space definitions
- Combined with speed and jerks:
 - Speed \(\leq 80 \text{ km/h} \) and acceleration norm \(> 0.6 \text{ g} \) and jerk \(> 2 \text{ g/s} \),
 - Speed \(> 80 \text{ km/h} \) and acceleration norm \(> 0.5 \text{ g} \) and jerk \(> 2 \text{ g/s} \),
 - Speed \(> 100 \text{ km/h} \) and acceleration norm \(> 0.4 \text{ g} \) and jerk \(> 2 \text{ g/s} \).
Example 3: Jerks

Rate of change of deceleration (da/dt)

- 21 jerk value thresholds were evaluated in the sensitivity analysis (...) The jerk-rate was then compared to the crash rate for each segment (Mousavi et al., 2015)

- The threshold value X was varied from 0.50 ft/s3 to 2.75 ft/s3 with an increment of 0.25 ft/s3 (Pande et al., 2017) ... 10 thresholds

- Theory-based or data-based?
Summary

Larger ("cheap") studies

- Using other party datasets, such as vehicle fleet data
- One can remove outliers, select subsets…

Smaller ("expensive") studies

- Not network-wide
- For example traffic conflict studies: mostly 1 site only
Conclusions Discussion

“Which validation is more valid?”

- Validation approach depends on amount of available data
- Big data → “data mining”
- Small “expensive” data → ???
- Product / process validation
Thank you for your attention

Jiří Ambros
jiri.ambros@cdv.cz

CDV – Transport Research Centre
Líšeňská 33a, 636 00 Brno, Czech Republic

www.cdv.cz/en/